

Solidia Technologies: an example of Carbon Capture and Utilization

V. Meyer¹, J. Bryant², S. Sahu³

¹LafargeHolcim Research Centre, ^{2, 3} Solidia Technologies,

International VDZ Congress 2018

September 26–28, 2018; Düsseldorf, Germany

Solidia Cement: a Low-Calcium Silicate Cement (CSC)

Who is Solidia Technologies?

- US start-up founded in 2008
- Funding: \$80 Millions from investors
 - Kleiner Perkins Caufield & Byers, Bright Capital, BASF Venture Capital, BP Ventures, LafargeHolcim, Total, Air Liquide, Oil & Gas Climate Initiative...

Development of a non-hydrating binder that reacts with CO₂ for precast concrete

Solidia Technologies solution

Technical solution: cement & concrete

CO₂ emissions at cement plant reduced by 250 kg (per ton of clinker)

Up to 300 kg of CO₂ permanently stored

in concrete (per ton of cement used)

From partnership to commercial agreement

Partnership LafargeHolcim / Solidia Technologies

- Step 1 August 2013: JDA between Lafarge and Solidia Technologies
- Step 2 January 2015: Commercial agreement

Commitments Lafarge/Solidia :

Benefit Summary

Product	 Same mix designs 28-day strength in < 1 Day Low shrinkage Light cement colour Better pigmentation 	 No Ca(OH)₂: Low efflorescence 	
Process	 Same mixing / forming Rapid cure Fast clean-up Reduced concrete waste 	 Streamlined post-cure processes Reduced inventory Extended production season 	
Sustainability	 Up to 70% reduction in CO₂ footprint Consumes waste CO₂ Stores as stable calcium carbonate 80% of process water can be recycled 	 Local raw materials Potential carbon credits Sustainable construction credits 	

Solidia Technologies solution

Technical solution: CO₂ emissions reductions

- Clinker composition: Wollastonite (CS), Rankinite (C₃S₂) & Belite (C₂S)
 - Different raw mix: Target 1:1 C/S molar ratio → less limestone used
 - Lower clinkering T°C than for OPC: 1250°C // 1450°C

Solidia Cement

CO₂ Emissions and Sequestration per ton of Clinker

Clinker Type	Limestone Decomposition	Fossil Fuel Combustion	Total CO₂ Emissions	Sequestered CO₂ in Concrete
PC Clinker	540 kg	270 kg	810 kg	-
CSC Clinker	375 kg	190 kg	565 kg	up to 300 kg

- No clinker dilution taken into account for both clinkers
- Grinding energy not taken into account (raw mix and clinker)

Solidia Cement production

Cement production in Whitehall plant (USA)

- Raw materials used available in the quarry:
 - Quarry rock: limestone containing some silica and minor elements (Al₂O₃, Fe₂O₃, MgO, SO₃)
 - Sand: mainly SiO₂
- Fuels used: Petcoke / Coal / Plastics
- 4 stages preheater kiln

Solidia PC clinker Clinker Stable Period Normal production production period GJ/t ck Specific heat 3.89 3.16 consumption (SHC) Stack CO₂ % 24.4 14.2 CO_2 Nm³/t ck 474 334 emissions

Solidia Cement production

Cement production in Whitehall plant (USA)

- Productibility possible improvements:
 - Throughput of the kiln to optimize
 - Different behaviour in the kiln than an OPC clinker
 - New operational conditions to follow
 - Clinkering habits to be adapted and changed
 - Good compromise to be found in between quality and behavior in the kiln
 - Avoid over burning → rings formation
 - Potential kiln stops
 - Grindability equivalent to OPC
- Even all these production aspects, this first industrial trial proved 30% CO₂ emissions reduction

Ring formed and gummy material going through

CO₂ footprint reduction due to concrete uptake

- Two applications tested:
 - Pavers
 - Hollow cores

Press machine

Fresh Solidia Concrete

Fresh Solidia Concrete in contact with CO₂ (24h)

CO₂ curing

CO₂ footprint reduction due to concrete uptake

 Carbonation efficiency followed by mass gain (CO₂ uptake)

Concrete Product	Mass Gain (CO ₂ uptake), %	
Paver	3.4	
Hollow Core	3.3	

 Lab C and H measurements in a oven coupled to IR cell vs. temperature profile

TEMPERATURE (°C)

22º1

Solidia

Technologies

Total CO₂ savings

Solidia Technologies Developments

1st industrial pilot (USA): revamping existing chamber

Typical Run:

- ~8,000 pavers
- 40 t concrete,
- 5 t cement Pavers quality:
 - Cs > 8000psi = 55 MPa
- F/T pass

• 2nd industrial pilot (UK): New designed chamber

- Equipment commissioning started August 2017
- 20 runs performed
 Pavers quality (EN1338):
- Ts > 3.6 MPa
- F/T pass for some runs

Solidia Technologies Developments

A 3rd industrial pilot under commissioning (Canada) •

- Equipment commissioning started June 2018
- 4 runs performed already

Conclusions

What has been developed to date?

• On the cement side:

More than 30 plants assessed at lab scale

- 4 plants assessed at pilot scale
- Industrial scale
 - 3 times 5000t produced worldwide
- On the concrete side:

More than 50 pilot tests worldwide

3 industrial pilots installations

Durability & Market Acceptance:

- ETA for the cement on-going
- Long-term durability
 assessment

Conclusions: Solidia Technologies business model, a complete integrated solution to precast customers

- Raw material quality
- Plant process capability
- Product performance
- Logistic
- Durability
- R&D

Solidia technology Solidia Technologies

- Raw material selection
- Mix Design
- Testing
- Curing process
- Durability

CO₂ management Air Liquide

- CO₂ capture
- CO₂ sourcing and supply
- Equipment design

Integrated offer from LH

Precast customers

LafargeHolcim

© LafargeHolcim 2015

Pavers job site with Solidia Concrete

Thank you for your attention, Questions?

LafargeHolcim, Solidia Technologies and BRE acknowledge the European Union for its funding in the framework of LIFE Program under grant agreement N° LIFE15 CCM/FR/000116.

www.solidlife.eu

