

Properties of Solidia® Cement and Concrete

V. Meyer¹, S. Sahu², A. Dunster³

¹LafargeHolcim Research Centre, ²Solidia Technologies, ³ Building Research Establishment and Coventry University

Presenter: V. Atakan²

ILCCC2019 June 24–26, 2019, London, UK

Solidia Cement®: a Low-Calcium Silicate Cement (CSC)

Who is Solidia®?

A cement and concrete technology company:

- 1. A low-carbon, non-hydrating binder that reacts with CO₂
- 2. Concrete curing technology enabling carbonation of concrete

Solidia Technologies Solution

Same raw materials

Same kiln

- Same mix components
- Same mixer
- Same cycle time

- Same forming casting
- Same cycle time

- CO₂-Curing
- Reduced curing times (24 hours vs. 28 days)

Solidia Cement™

CO₂ emissions at cement plant reduced by 250 kg (per ton of clinker)

Solidia Concrete™

Up to 300 kg of CO₂ permanently stored in concrete (per ton of cement used)

From partnership to commercial agreement

Partnership LafargeHolcim / Solidia Technologies

20t IbuTec

Step 1 – August 2013: JDA between Lafarge and Solidia Technologies

5000t WHL

5000t PECS

Solidia® Solution

Technical solution: CO₂ emissions reductions

- Clinker composition: Wollastonite (CS), Rankinite (C₃S₂) & Belite (C₂S)
 - Different raw mix: Target 1:1 C/S molar ratio → less limestone used
 - Lower clinkering T°C than for OPC: 1250°C // 1450°C

Solidia Cement production

Cement production in Whitehall plant (USA)

- Raw materials used are available in the quarry:
 - Quarry rock: limestone containing some silica and minor elements (Al₂O₃, Fe₂O₃, MgO, SO₃)
 - Sand: mainly SiO₂
- Fuels used: Petcoke / Coal / Plastics
- 4-stage preheater kiln

		PC clinker	Solidia Clinker
Peri	od	Normal	Stable
		production	production
			period
Specific heat	GJ/t ck	3.89	3.16
consumption			
(SHC)			
Stack CO ₂	%	24.4	14.2
CO ₂	Nm ³ /t ck	474	334
emissions			

Solidia Cement production

Cement production in Whitehall plant (USA)

- Potential future improvements:
 - Throughput of the kiln need to be optimized
 - Different behaviour in the kiln than OPC clinker.
 - · New operational conditions to follow
 - Clinkering habits to be adapted and changed
 - Good compromise to be found in between quality and behavior in the kiln
 - Avoid over burning → rings formation
 - Potential kiln stops
 - Grindability equivalent to OPC
- Even all these production aspects, this first industrial trial proved 30% CO₂ emissions reduction

Ring formed and gummy material going through

Solidia Concrete

CO₂ footprint reduction due to concrete uptake

- Two applications tested:
 - Pavers
 - Hollow cores

Press machine

Fresh Solidia Concrete

Fresh Solidia Concrete in contact with CO₂ (24h)

Solidia Concrete

CO₂ footprint reduction due to concrete uptake

 Carbonation efficiency followed by mass gain (CO₂ uptake)

Concrete Product	Mass Gain (CO ₂ uptake), %	
Paver	3.4	
Hollow Core	3.3	

CS = CaSiO₃

Si = Silica

 $Ca = CaCO_3$

Lab C and H
 measurements
 in a oven
 coupled to IR
 cell vs.
 temperature
 profile

Solidia Concrete

Total CO₂ savings

Concrete Product	Mass Gain (CO ₂ uptake), %	CO ₂ Sequestered/t of Cement	CO ₂ Savings/t of Cement	Total CO ₂ Savings/t of Cement	Total CO ₂ Savings, % (vs. 810kg for OPC)
Paver	3.4	236 kg	245 kg	481 kg	59.4
Hollow Core	3.3	220 kg	245 kg	465 kg	57.4

CO₂ captured in the concrete

CO₂ saved during clinker production

Two applications within the CO₂ savings announced were proved

Concrete mixes for creep, frost scaling and taber abrasion at BRE (source Solidia)

Mix constituent	PC reference specimens (reference concrete mix)	Solidia binder specimens (test concrete mix)
SC PECS (Solidia		
Cement) (kg/m ³)	-	350
PC (kg/m³)	350	-
Construction. Sand		
(kg/m ³)	821	821
5/10 mm Coarse		
aggregate (kg/m³)	414	414
20/10 mm Coarse		
aggregate (kg/m³)	737	737
Water (kg/m ³)	136	136
w/c	0.39	0.39

bre

Compression creep BS ISO 1920-9:2009

- rigs loaded to 30% of failure load
- 3 rigs per mix type
- Load maintained over 3 months
- "unloaded"
 specimens to
 correct strains to
 allow for drying
 shrinkage

Creep coefficient

The ratio of the <u>ultimate creep strain</u> to the <u>elastic strain</u> is the creep coefficient θ

Creep Test Results

Frost Scaling: Specimens After Exposure

- Specimens
 prepared as
 shown (sawn
 surface)
- Freeze/thaw cabinetaccelerated cycling (56 cycles)
- Scaled mass measured

Frost Scaling Results to 56 Cycles (water)

bre

Taber Abrasion Results

Taber Abrasion Results (500 cycles, PC reference and Solidia concretes)

Natural weathering: BRE outdoors exposure sites (inland and coastal)

- Tensile splitting strength of concrete block paver specimens from industrial manufacturing trials stored in the above environments (inland and coastal) over time. Also concrete to assess:
 - Exposure to aggressive solutions (eg acid, sulfates)
 - Seawater exposure
 - Drying shrinkage
 - Moisture (dimensional) stability

Solid Life Project

Interim test results: Current condition of block pavers (strong sulfate solutions, exposure to approx. 9 months)

Undamaged edges in all cases

Interim test results: Current condition of block pavers (citric acid solution, exposure to approx. 9 months)

Similar degree of attack in both cases

Conclusions

What has been developed to date?

On the cement side:

More than 30 plants assessed at lab scale

4 plants assessed at pilot scale

3 times 5000t produced worldwide

On the concrete side:

Durability & Market Acceptance:

- ETA for the cement on-going
- Long-term durability assessment

Thank you for your attention, Questions?

LafargeHolcim, Solidia® and BRE acknowledge the European Union for its funding in the framework of LIFE Program under grant agreement N° LIFE15 CCM/FR/000116.

www.solidlife.eu

